Deteksi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit dengan Algoritme K-Means
نویسندگان
چکیده
Oil extraction rate (OER) of fresh fruit bunches (FFB) palm oil is depend on the stage ripeness. The process detecting ripeness FFB has difficult by manually. Farmers find it to reach detect with eye, when tree tall. So farmers need a system that able maturity level based color. K-Means method capable clustering closest mean value centroid from number objects cluster k. Data obtained 2 plantations in East and North Kalimantan. In this study, four levels calculation elbow method. training data used study 80 data. test image 40 There are 36 appropriate classification so accuracy grouping using k-means segmentation 90%.
منابع مشابه
Analisis Kinerja Sistem Cluster Terhadapa Aplikasi Simulasi Dinamika Molekular NAMD Memanfaatkan Pustaka CHARM++
Tingkat kompleksitas dari program simulasi dinamika molekular membutuhkan mesin pemroses dengan kemampuan yang sangat besar. Mesin-mesin paralel terbukti memiliki potensi untuk menjawab tantangan komputasi ini. Untuk memanfaatkan potensi ini secara maksimal, diperlukan suatu program paralel dengan tingkat efisiensi, efektifitas, skalabilitas, dan ekstensibilitas yang maksimal pula. Program NAMD...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملLag-Lead Compensator for Shape Memory Alloy in Gripping Manipulation
Abstrak Shape Memory Alloy (SMA) adalah salah satu jenis aktuator yang sedang banyak dipelajari pada aplikasi skala mikro dan nano. Namun di sisi lain, pengembangan pengendalian dalam skala ini masih perlu pengembangan dan penelitian lebih lanjut. Artikel ini mempresentasikan hasil evaluasi tanggapan pergerakan kendali kalang tertutup dari TiNi SMA dalam bentuk spring yang dikendalikan kompensa...
متن کاملK-means vs Mini Batch K-means: A comparison
Mini Batch K-means ([11]) has been proposed as an alternative to the K-means algorithm for clustering massive datasets. The advantage of this algorithm is to reduce the computational cost by not using all the dataset each iteration but a subsample of a fixed size. This strategy reduces the number of distance computations per iteration at the cost of lower cluster quality. The purpose of this pa...
متن کاملK+ Means : An Enhancement Over K-Means Clustering Algorithm
K-means (MacQueen, 1967) [1] is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set to a predefined, say K number of clusters. Determination of K is a difficult job and it is not known that which value of K can partition the objects as per our intuition. To overcome this probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SINTECH (Science and Information Technology) Journal
سال: 2022
ISSN: ['2598-7305', '2598-9642']
DOI: https://doi.org/10.31598/sintechjournal.v5i2.1146